Движение от точки к точке, смешанное движение, контурное движение.
Для многих задач многоосевые линейные системы — декартовы роботы, XY-столы и портальные системы — перемещаются по прямым линиям, обеспечивая быстрые перемещения из одной точки в другую. Но в некоторых приложениях, таких как дозирование и резка, требуется, чтобы система двигалась по окружности или сложной форме, которую невозможно создать простыми линиями и дугами. К счастью, современные контроллеры обладают достаточной вычислительной мощностью и скоростью для определения и выполнения сложных траекторий движения для многоосевых систем с двумя, тремя и даже более осями движения.
Движение от точки к точке
Основная идея движения от точки к точке — достичь заданной точки независимо от выбранного пути. В простейшем случае движение от точки к точке предполагает независимое перемещение каждой оси для достижения заданного положения. Например, для перемещения из точки (0, 0) в точку (200, 500) (в миллиметрах) ось X переместится на 200 мм, а после достижения заданного положения ось Y переместится на 500 мм. Независимое перемещение по двум сегментам обычно является самым медленным способом перемещения из одной точки в другую, поэтому этот вид движения от точки к точке используется редко.
Другой вариант движения от точки к точке — одновременное перемещение осей по одному и тому же профилю. В приведённом выше примере — перемещение из точки (0,0) в точку (200,500) — ось X завершит движение раньше, чем ось Y, поэтому траектория движения будет состоять из двух соединённых линий.
Смешанное движение
Разновидностью движения «от точки к точке» для многоосевых линейных систем является смешанное движение. Для создания смешанного движения контроллер накладывает или смешивает профили движения двух осей. Когда одна ось завершает движение, другая начинает движение, не дожидаясь полной остановки предыдущей. Задаваемый пользователем «коэффициент смешивания» определяет местоположение, время или значение скорости, с которого вторая ось должна начать движение.
Смешанное движение создаёт радиус, а не острый угол при изменении направления движения. В таких приложениях, как дозирование и резка, может потребоваться смешанное движение, если отслеживаемая деталь или предмет имеет скруглённые углы. И даже если радиус (кривая) на углу движения не требуется, смешанное движение обеспечивает преимущество, заключающееся в сохранении движения осей, избегая замедления и ускорения, необходимых для остановки и возобновления движения при резкой смене направления.
Линейная интерполяция
Более распространённым типом движения для многоосевых систем является линейная интерполяция, которая координирует движение между осями. При линейной интерполяции контроллер определяет подходящий профиль движения для каждой оси, чтобы все оси достигали целевого положения одновременно. Результатом является прямая линия — кратчайший путь — между начальной и конечной точками. Линейная интерполяция может использоваться для двух- и трёхосевых систем.
Круговая интерполяция
Для круговых траекторий движения или движения по дуге многоосевые линейные системы могут использовать круговую интерполяцию. Этот тип движения работает практически так же, как линейная интерполяция, но требует знания параметров окружности или дуги, по которой осуществляется движение, таких как центр, радиус и направление, или центр, начальный угол, направление и конечный угол. Круговая интерполяция выполняется по двум осям (обычно X и Y), но при добавлении движения по оси Z получается винтовая интерполяция.
Контурное движение
Контурирование используется, когда многоосевая система должна следовать заданному пути для достижения конечной точки, но траектория слишком сложна для определения с помощью последовательности прямых линий и/или дуг. Для достижения контурного движения в процессе программирования управления задаётся ряд точек и время перемещения, а контроллер движения использует линейную и круговую интерполяцию для формирования непрерывного пути, проходящего через эти точки.
Разновидность контурного движения, называемая движением PVT (положение, скорость и время), позволяет избежать резких изменений скорости и сглаживает траектории между точками, указывая целевую скорость (в дополнение к положению и времени) в каждой точке.
Время публикации: 06 января 2020 г.